Home

.

Corso Fotografia

 

Un'occhiata all'interno


Sensore di immagine
Il funzionamento di una fotocamera digitale è molto simile a quello di una normale fotocamera tradizionale a pellicola. Ambedue contengono un obiettivo, un diaframma, ed un otturatore. Le lenti mettono a fuoco il fascio luminoso all'interno della camera, il diaframma si apre creando un foro di diametro variabile e l'otturatore controlla il tempo di esposizione. Questo meccanismo controlla esattamente la quantità di luce che entra nella camera e colpisce il sensore.

La grande differenza fra le camere tradizionali e quelle digitali consiste nel modo in cui la luce viene catturata. Al posto della pellicola fotosensibile, le fotocamere digitali usano un dispositivo elettronico allo stato solido chiamato sensore di immagini o CCD (Charge-Couple Device). Sulla superficie di questi chip di silicio di varie dimensioni, si trova una griglia di milioni di diodi fotosensibili, detti fotoelementi o più comunemente pixel (picture element). Ogni singolo fotoelemento cattura una porzione dell'intera immagine.


sensore di immagini ccd

Un sensore di immagini tipo CCD sullo sfondo di un ingrandimento dei suoi pixel, ognuno dei quali cattura una porzione dell'immagine finale.

Come si può notare, i pixel verdi sono in numero doppio rispetto ai rossi e ai blu. Infatti i nostri occhi sono molto più sensibili al verde, che quindi deve essere riprodotto con maggiore accuratezza.


L'esposizione
Quando si preme il pulsante per scattare una foto, una cellula fotoelettrica misura la quantità di luce che entra nella camera attraverso le lenti, determinando il valore di apertura del diaframma e la velocità di otturazione per una corretta esposizione. In questo istante ogni pixel del sensore registra la brillantezza della luce che lo colpisce, accumulando una carica elettrica. Più intensa è la luce, più alta sarà la carica elettrica. Alla chiusura del diaframma, la carica di ogni pixel viene misurata ed il suo valore viene convertito in un numero binario (digitale). La serie di numeri ottenuta viene elaborata dal software della camera per ricostruire l'immagine sul display e memorizzarla nella scheda di memoria.

trasparenza camera digitale Vista in trasparenza di una tipica reflex, senza l'obiettivo. Quando il diaframma si apre, la luce arriva al sensore di immagini. Ogni singolo pixel registra l'intensità della luce che lo colpisce, il colore verrà elaborato ed aggiunto dal software di controllo.


Solo bianco e nero
Potrà sembrare sorprendente, ma i pixel del sensore possono registrare solo l'intensità della luce, non il suo colore. Ogni singolo pixel colpito dalla luce produce una scala di 256 valori che corrispondono a 256 tonalità di grigio, dal puro nero al puro bianco. Come la fotocamera riesca a ricreare un'immagine colorata partendo dal bianco-nero, è una storia molto interessante che vedremo più avanti.


scala dei grigi La scala dei grigi comprende 256 tonalità, dal puro nero al puro bianco.

L'immagine con 26 tonalità è solo indicativa.


Come nasce il colore in fotografia
Quando fu inventata, la fotografia poteva essere solo in bianco e nero. La ricerca del colore fu un processo lungo e difficile, e per molti decenni il colore veniva applicato a mano sulle lastre esposte.

Il primo vero passo verso la ricostruzione del colore fu compiuto nel 1860 dal fisico scozzese James Clerk Maxwell che per primo usò un negativo in bianco e nero e tre filtri in rosso, verde e blu. Fece scattare dal fotografo Thomas Sutton tre foto di un oggetto colorato, ognuna con un diverso filtro applicato davanti all'obiettivo. Le tre immagini furono proiettate su uno schermo con tre diversi proiettori, ognuno con lo stesso filtro usato per le riprese.

Quando le tre immagini furono perfettamente sovrapposte, il risultato fu la prima vera immagine ottica a colori. Quasi un secolo e mezzo più tardi, i sensori di immagini funzionano secondo lo stesso principio. Tutti i colori di un'immagine fotografica hanno origine dai tre colori primari, Rosso, Verde, Blu (RGB). Quando i tre colori sono combinati nella stessa intensità, si ottiene luce bianca.

Il sistema additivo RGB è usato tutte le volte che la luce viene proiettata per formare i colori su uno schermo, o direttamente nei nostri occhi. Per essere più corretti, dobbiamo precisare che il sistema RGB viene usato quando si tratta di miscelare luce, come nel monitor del nostro PC o schermo TV, mentre nei processi di stampa si usa il sistema sottrattivo CMY perché si tratta di miscelare pigmenti.

In questo caso i colori primari usati sono Cyan (turchese), Magenta (violetto) e Yellow (giallo), che possono produrre tutte le sfumature di tutti i colori se miscelati in varie proporzioni. In teoria, se miscelati in uguali proporzioni, dovrebbero produrre il nero. In realtà produrrebbero un colore indefinito bruno-grigio-scuro. Per questo motivo, per riprodurre fedelmente i toni scuri, nelle nostre stampanti fotografiche è presente anche un serbatoio di inchiostro nero.

Per riassumere, il sistema additivo (RGB) crea i colori aggiungendo luce ad uno sfondo nero, mentre il sistema sottrattivo (CYM) usa pigmenti per bloccare selettivamente la luce riflessa da uno sfondo bianco.



Il sistema additivo RGB
(Red-Green-Blue).

Se si sovrappongono i tre colori primari additivi di eguale intensità, si forma il bianco. Con la sovrapposizione di due colori si formano rispettivamente i colori giallo, cyano e magenta.

Il sistema sottrattivo CMY
(Cyano-Magenta-Yellow).

Se si sovrappongono i tre colori primari sottrattivi di eguale intensità, si forma il nero. Con la sovrapposizione di due colori si formano rispettivamente rosso, verde e blu.



Dal bianco/nero al colore
Poiché la luce solare è composta dai tre colori di base, basta mettere un filtro rosso, o verde o blu, sopra ogni pixel per ottenere immagini colorate, esattamente come fece Maxwell nel 1860. Nel sistema Bayer usato in molti sensori, i filtri verdi sono in numero doppio degli altri. Poiché l'occhio umano è molto più sensibile al verde che agli altri due colori, l'esatta resa cromatica del verde è più importante.

sensore con filtri colorati
Filtri colorati ricoprono ogni pixel del sensore. I filtri verdi sono in numero maggiore degli altri. Le micro-lenti al di sopra dei filtri servono a focalizzare la luce per aumentare la resa del sensore.

Per gentile concessione di Fuji
filtri colorati verdi rossi blu I filtri colorati rossi, verdi e blu permettono il passaggio solo della rispettiva componente cromatica della luce incidente.

Con questo sistema si riesce a scomporre la luce separando i 3 colori primari.
Il sistema RGB è certamente il più diffuso, ma non il solo. Altri sistemi usano la combinazione di colori sottrattivi CMY (Cyan-Magenta-Yellow), oppure CYGM (Cyan-Yellow-Green-Magenta), o la variante introdotta da Sony RGBE (Emerald). Ogni sistema ha i suoi vantaggi e punti deboli, i tentativi di migliorare la resa cromatica sono costanti.


L'interpolazione cromatica
Con i filtri colorati, ogni pixel registra la brillantezza della luce colorata che passa attraverso il proprio filtro, mentre gli altri colori vengono bloccati. Per esempio, un pixel con filtro rosso percepisce solo la luce rossa che lo colpisce. Se su quel pixel non arriva luce rossa, occorre determinare di quale colore quel pixel dovrebbe essere. Usando come riferimento i colori dei pixel che lo circondano, si stabilisce il colore non registrato direttamente.

Il ragionamento (semplificato) è il seguente: "Se io sono rosso brillante e i due pixel vicini a me sono verde e blu pure brillanti, allora posso concludere che in realtà io sono un pixel bianco, come anche i miei vicini." Oppure: "Io sono rosso brillante, ma i miei due vicini (verde e blu) sono spenti; significa che anche loro sono rossi".

In pratica, ogni pixel misura l'intensità di uno dei colori primari, se questo colore è presente nella luce incidente. Se invece quel pixel non percepisce luce, il suo colore viene "stimato" dal software basandosi sul colore dei pixel adiacenti.

E' come un pittore che crea un nuovo colore mescolando vari colori sulla sua tavolozza. Per eseguire questo processo in modo ottimale, è necessaria una mole impressionante di calcoli, dato che in realtà per ogni pixel si esegue il confronto con i suoi otto vicini.

Questo processo (interpolazione cromatica o interpolazione Bayer) implica un notevole consumo delle batterie, un rallentemento delle operazioni, alti costi di sviluppo del software e di produzione dei microchip. Per tutti questi motivi nelle camere compatte si usano algoritmi relativamente semplici, con conseguente inferiore livello della qualità delle immagini.

colore dei pixel
Il colore effettivo di ogni pixel viene calcolato confrontando i colori degli otto pixel che lo circondano.


C'è un computer nelle tua fotocamera
Ogni volta che si scatta una foto, milioni di operazioni vengono eseguite in un istante. Sono questi calcoli che rendono possibile catturare, convertire, elaborare, comprimere, memorizzare, visualizzare in anteprima, trasferire, e riprodurre l'immagine. Tutti questi calcoli vengono effettuati da un microprocessore all'interno della fotocamera (foto a destra), simile a quello del nostro computer.

La sola differenza è costituita dalla potenza di calcolo, necessariamente limitata nelle fotocamere per motivi spazio, di costi, e di consumo energetico.

 


Fonte e diritti   www.3megapixel.it